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. 
I. INTRODUCTION 

Ih NASA Contract NAS8-20175, the Contractor w a s  responsible f o r  a 

preliminary inves t iga t ion  of t h e  problem of describing t h e  motion of a r i g i d  

a r t i f i c i a l  e a r t h  satel l i te  about i t s  center  of mass. 

methods of celestial mechanics were to  have been employed t o  study t h e  motion 

of such a body under t h e  influence of c e r t a i n  small perturbing torques ac t ing  

The per turba t ion  

upon it. 

During t h e  period covered by t h e  cont rac t  t he  following t a sks  were 

performed : 

1 )  A l i t e r a t u r e  search was made t o  determine the  present state of 

t he  a r t  i n  t h i s  area. 

2) Studies of a general  nature r e l a t i n g  t o  t h e  problem area under 

inves t iga t ion  w e r e  conducted. These s t u d i e s  were concerned, f o r  t he  most 

p a r t ,  with the  examination of various representa t ions  of t h e  pe r t inen t  

equations of motion with the  view i n  mind of t ry ing  t o  decide which repre- 

sen ta t ions  lend themselves most readi ly  t o  per turba t ion  work. 

3) The per turba t ions  of uniaxial bodies by both g r a v i t a t i o n a l  torques 

and s p e c i a l  cases of magnetic torques were examined. 

J acob i  w a s  used i n  t h e  g r a d t a t i o n a l  case and t h e  development of a f i r s t -o rde r  

theory fo r  t h i s  problem appears imminent, 

The method of Hamilton- 

4) The q u a l i t a t i v e  n a t u r e  of t he  e f f e c t s  of various perturbing torques 

w a s  compared with observed motions. 

5) I n  a n t i c i p a t i o n  of a need f o r  computer support and v e r i f i c a t i o n  

of a n a l y t i c a l  r e s u l t s ,  a general  i n t eg ra t ion  rou t ine  w a s  developed. 

Detailed r e s u l t s  of these  inves t iga t ions  follow. 



A. Equations of Motion. 

1. Euler Equations. 

I -  The bas i c  vec tor  equation of motion f o r  a r i g i d  body r o t a t i n g  about 

i ts  center  of m a s s  i s  
t 

L = i ,  (1) 

where L is  t h e  torque and H is t h e  angular momentum, both referenced 

t o  t h e  center  of m a s s .  

Equation (1) holds i n  any non-rotating reference frame. I n  a 

frame r o t a t i n g  i n  i n e r t i a l  space with angular ve loc i ty  w, equation (1) 

becomes . 
L = H + OH, (2) 

where 

and t h e  non-zero elements of t he  matrix (3) are the  components of 

w along the  Cartesian axes indicated by t h e  subscr ip ts .  A similar 

designation of components of o ther  vec to r s  is  made i n  what follows. 

The tensor Q is equivalent t o  t h e  vector operator ( w x ). 

I f  t h e  r o t a t i n g  coordinate system is  fixed i n  t h e  r i g i d  body, 

then 

H = I w ,  (4) 

where I is  t h e  moment of i n e r t i a  tensor.  Then equation (2) becomes 

L' = H' + R ' I ' w '  . ( 5 )  

(The prime no ta t ion  i s  used t o  i n d i c a t e  t h e  bodyLfixed re ference  frame.) 

F ina l ly ,  if the  body-fixed re ference  frame i s  aligned with the 

p r i n c i p a l  axes, I' is diagonal. 



I Speci f ica l ly  

t 

A 0 0  
( 6 )  

where A, B, and C are the  moments of i n e r t i a  referenced t o  the  p r i n c i p a l  

axes. 

Equation (5) may be wr i t t en  i n  t he  s c a l a r  forpl 
7 

L' = A6; + (C-Eb61"w' 
Y Z  

L' = B;' + (A-C)W'W' 
Y Y x z  

X 

(7) 

and, i n  t h i s  form, t h e  three  equations i n  (7) are known as t h e  Euler 

equations. They c o n s t i t u t e  a set of d i f f e r e n t i a l  equations f o r  t he  components 

of Note t h a t  they do not  g i v e  t h e  o r i e n t a t i o n  of the body. Further,  

s ince  L'  i n  general  depends on t h e  o r i en ta t ion ,  they cannot be solved with- 

ou t  add i t iona l  r e l a t i o n s .  One such gk la t ion  gives t h e  transformation matrix. 

2. Poisson Equations. 

I f  a vector transforms from the body-fixed frame t o  the  space-fixed 

one by 

P = T P ' ,  

where T is  the  transformation matrix, 

then 

i = QT. 

Also, s ince  Q is  a tensor and transforms according t o  
I 

Q = TR'T , 

then 
0 

T = TO' . 
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T- 
LU scalar form, 

Equations (12) are the Poisson equations. Combined with the Euler equations, 

they comprise a set of simultaneous d i f f e r e n t i a l  equations for  T and w'.  

3. Euler Angles. 

Tjrpically the Euler angles are defined as  shown i n  f igure 1. 

3 Figure 

x '  

1. 



The corresponding t ransformaihn  m a t h  between the body-$ixed4md 

space-fixed frames i s  

cos+cos$-sin+sin$cose, -cos$sing-sin$cos$cose, 

T = sin+cosg-cos+sin@osO, -sin$sin$+cos$cosgcosO, I singsine co s$ s ine  S Y 

The following r e l a t i o n s  map be shown t o  hold: 

where 

M =  

w =ME, 

w '  = NE, 

M =TN, 

0, cos+, s in+ s ine  

0, sin+,-cosU s ine  

1, o , case 

and 

sine, cosg, 0 

sine, -sin+, 0 

case , o , 1 

The inverse  r e l a t i o n s  for  M and N are 

-sin+ cote, cos$ cote, 1 

-+ ' s in+  9 0) 

s i n +  CSCe ,  -cos$ c s d ,  0 , 

sin$sine 

\-sing cote, -cos+ cote, I/. 
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An important r e l a t i o n  involves the k ine t i c  energy, 3. Speci f ica l ly  

T 
(22) T 7 = w Io = w'  1'0' . 

Using r e l a t i o n  (15), one may wri te  

"j = 9 2  STXS ¶ (23) 

where 

(24) T X = N I ' N  . 
- r ;xpi ic i t iy ,  X and i ts  inverse are: 

(Asin2$+Bcos2$)sin28 + Ccos28 , (A-B)sin$ cos$ s ine , 

x = (  (A-B)sin$ cos$ s ine 9 (Acos2$+Bsin2$) , 
9 ccose 0 

O f  parqlcurar @pQrqaqcp a r e  the  equations obtained by revert ing (15). 

I n  scalar form, 

. 
(27 1 . 3 JI = sin$ csce u: + cos$ csce w' 

Y 
e = cos$ w i  - sin$ w' 

Y 

$ = -sin$ cote w i  - cos$ cote w' + w l  . 
Y 

These equations express the  der ivat ives  of t h e  Euler angles i n  terms of 

t h e  Euler angles and components of 0'. 

they comprise a set of d i f f e r e n t i a l  equations i n  w '  and the  Euler angles. 

Together with the  Euler equations, 

B. Standardized Symbols,. 

I n  t h e  problem of t he  motion of a satell i te the re  are four  coordinate 

systems which are of pa r t i cu la r  i n t e re s t ,  and s ix  set$ b f ' . E u h  angles 
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' .  

r e l a t i n g  them. 

parameters. They are as follows: 

A standard notation has been adopted here f o r  these  

1. Cartesian Coordinate Systems. 

( x*,y*,z* The reference i n e r t i a l  coordinate system. Unless spec i f ied  

otherwise, t h i s  is an equa to r i a l  system with the  z*-axis d i r ec t ed  along 

the  e a r t h ' s  sp in  vector and the  x*-axis toward the  ve rna l  equinox. 

( x o , y o , ~ O  ) A coordinate system assoc ia ted  with the  sa te l l i t e  o r b i t  

plane,  with t h e  2,-axis d i r ec t ed  along t h e  normal t o  the  o r b i t  i n  t h e  

sense of t he  o r b i t a l  angular momentum associated with the  satel l i te ,  

and t h e  xo-axis toward the  ascending node. 

( x,y,z ) 

vector  of t h e  satel l i te  as i t  r o t a t e s  dbout i t s  center  of mass. The 

Z-axis is d i r ec t ed  along t h e  pos i t i ve  angular momentum vector.  

pos i t i on  of t h e  x-axis w i l l  be l e f t  undefined a t  t h i s  time. 

( x' ,y ' ,z '  ) The body-fixed a x i s  system, oriented along the  p r inc ipa l  

axes of t h e  body. The choice of the six poss ib le  o r i en ta t ions  w i l l  not 

be completely spec i f ied ,  but i n  general i t  w i l l  be made so t h a t  t h e  

angular momentum vector l ies  "close" t o  t h e  p o s i t i v e  2'-axis. 

A coordinate system associated with t h e  angular momentum 

The 

2 .  Euler Angles. 

r o t a t e s  (x*,y*,z*) i n t o  (x ,yo,z ) 

(28) 

(n, i , -)  

(+*,e*,$*) r o t a t e s  (x*,y*,z*) i n t o  ( x,y,z ) 

(+,e,@ r o t a t e s  (x*,y*,z*) i n t o  (x' ,yl , z l )  

0 

(JIL,e,,+ 1 r o t a t e s  b 0 , Y  , z o )  i n t o  ( x,y,z 1 
0 

(+o, e d ,  $o)  r o t a t e s  (xo ,yo, zo) i n t o  (x' ,y' , 2' 1 

(+',e' ,$')  r o t a t e s  ( x ,  y, z) i n t o  (x ' ,y ' , z ' )  
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C. Torque-Free Motion. 

The c l a s s i c a l  so lu t ions  f o r  t he  torque-free motion are obtained 

from the  Euler equations, (7), and e q u a t k n s  (27) -for, the Fiuler angles. 

I f  L = 0, equations (7) become 

A;' + (C-B)w'w' = 0 

B;' + (A-C)&wk = 0 

C i L  + (B-A)w'w' = 0 

X Y Z  

' Y  

X Y  

Since these  do not  contain the  Euler angles,  equations (29) may be solved 

independently of (27). 

1. Uniaqial Bodies. 

A un iax ia l  body i s  one that has two of i t s  p r i n c i p a l  moments of 

i n e r t i a  equal. I f  A = B i n  (29), w e  g e t  

Ai; + (C-A)w'w' = 0 
Y Z  3 
. A;' + (A-C)w'w' = 0 x z  Y 

c w '  = 0 
z 

The so lu t ions  have the  form 
1 

w' = p cos(nt+6) 
X / 

where 

w '  = p sin(nt+b) 
Y 

w '  = wz:, 
z 

and P, W Z O '  ' and 6 are determined by t h e  

J 
0 '  

20 * 

i n i t i a l  conditions.  

The Euler angles are obtained by combining equations (31) with 

t h e  d i f f e r e n t i a l  equations (27). The general  so lu t ion ,  however, is 

complicated. To simplify the  problem, a p a r t i c u l a r  o r i e n t a t i o n  of t h e  

space-fixed coordinate system i s  assumed; t h e  z-axis is  assumed t o  l i e  
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along t h e  angular momentum vector.  

t h a t  t h e  vec tor  H is, i t s e l f ,  space-fixed. 

W e  r equ i r e  

This implies a p r i o r i  knowledge 

Then t h e  r e l a t i o n  

g ives  t h e  following conditions 

' I  tan$' = w i / w '  
Y 

cos9' = Cu'/h 
( 3 4 )  

( I n  keeping with t h e  convention of Section II.B.2, primes are used t o  

i n d i c a t e  the  angles are re fe r r ed  t o  t h e  angular momentum coordinate system.) 

We a l s o  have, from (27), . 
9' = sin$'  Csce '  w '  + cos$' csc9' w' .  (35) 

Y X 

Solution of (34) and (35) gives 

I)' = I)' + ht/A 
0 

0 '  = e:, 

The 2'-axis o r  a x i s  of symmetry is  thus seen to descr ibe  a cone of 

half-angle 9 '  about t he  angular momentum vec to r ,  a t  a rate I)' = h/A. 
0 

This motion is commonly ca l l ed  Eulerian motion. 

2. T r i a x i a l  Bodies . 
If the  t h r e e  moments of i n e r t i a  are unequal, equations (29) must 

be solved. They have so lu t ions  i n  terms of t h e  Jacobian e l l i p t i c  functions.  

Using (29), and t h e  energy and momentum r e l a t i o n s  

";I = (~w;2+~~;2+cw;2) = constant,  (37 1 



~ 

we obta in  

1 -  

where 

B(B-C) 
b12 = A(A-C) , 

B(A-B) 
b32 5: C(A-C) . and 

If (39) is solved f o r  w ' w '  and the  r e s u l t s  are subs t i t u t ed  i n t o  

(29) one obta ins  

x z  

Bi' = (C-A) J(a12-bl 2 w ' 2 '  )(a32-b32w'2) ' . 
Y Y Y 

The i n t e g r a l  of (41) is an e l l i p t i c  i n t e g r a l  which may be expressed i n  

terms of the  Jacobian e l l i p t i c  functions.  

If 

then 

w '  = (a l /bl)sn(pt+c) .  
Y 

where 

p = [y) bla3 

and k, t h e  modulus of t he  e l l i p t i c  funct ion,  i s  given by 

k = b3al/a3bl.  

The remaining components of w '  are  obtained i n  a similar way and, 

hence, w e  obtain the  complete so lu t ion  

w '  = al cn(pt+c) 
X 

w '  = (al/bl)sn(pt+c) 
Y 

(43) 

(44) 

(45) 

w'  = a dn(pt+c). 
2 3  
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The above so lu t ion  is v a l i d  only when condition ( 4 2 )  is  s a t i s f i e d .  

However, w e  may note  t h a t  interchange of t h e  x*-  and 2'-axes reverses  

the  inequal i ty  i n  ( 4 2 ) .  Thus condition ( 4 2 )  may be assured (except when 

h2 = 2BdJ ) by properly designating t h e  p r inc ipa l  axes. Note, however, 

t h a t  t h i s  designation depends on the i n i t i a l  conditions. The case 

h2 = 2 B 7  is  covered by t h e  l imi t ing  case k2-+1, for  wHPch 

w'  = al sech(pt+c) 
X 

w' = (a,/bl)tanh(pt+c) 

w'  = a3 sech(pt+c). 
Y 

z 

The Euler angles as functions of time are found, i n  t h e  same way 

as before,  from equations (34) and ( 3 5 ) .  Equations ( 3 4 )  give  

Equation ( 3 5 )  gives  

or  

where 

and 

cot+'  = tn(pt+c) 
Ab, 

(47 1 

( 4 8 )  

i ' 

( 4 9 )  

Equation ( 4 9 )  may be  solved i n  terms of an e l l i p t i c  i n t e g r a l  of t h e  

t h i r d  kind : 

du J' 1 + n snzu. TI(n,k,u) = 
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However, t h e  formulation so obtained does not r e a d i l y  reduce t o  t h e  

un iax ia l  case when A = B. Instead, w e  introduce t h e  func t ion  

The expression f o r  $' then takes  the form 

$' = $A + ht/A + a F(B,k,nt+c) - P(B,k,c)l 

. .  c 
Since a = 6 wnen A = B, t h i s  immediateiy gives the i i n i u i a l  case. 

111.. DAMPED UNIAXIAL, BODIES 

As shown previously, a f r e e  un iax ia l  body executes Eulerian motion, 

with t h e  a x i s  of symmetry maintaining a constant angle, 0 ,  with the  

angular momentum vector.  The observations of t he  Pegasus satellites, 

however, i n d i c a t e  that 8 increases with time f o r  those bodies, eventually 

reaching 90°.  Such a motion ind ica tes  a l o s s  i n  energy, so that some 

damping torque appears t o  be acting on t h e  satellite. A preliminary 

study w a s  performed t o  determine the  e f f e c t s  of c e r t a i n  types of damping. 

The Euler equations f o r  a uniax ia l  body are 

A;' + (A-C)W'W' = L; Y x z  

c;; = L' . z 
To consider t h e  simplest  form of damping, l e t  

L' = - b' 
where k is a real constant. 

The l a s t  of equations (53) becomes 

= - kw; , 
which g ives  

- t/?l 
w ' =  w ' e  z ZO 

where = C/k . 

3 
(53) 

(54) 
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For t h e  o ther  two c=pments,  %e r e c p i r s  the equations to have t h e  same 

form as i n  t h e  torque-free case 

w' = p cos(nt+d) 

w'  = p sin(nt+d) 

X 

[from (31)) 
Y 

where now p and n are allowed t o  vary with time. Solving f o r  t hese  two 

v a r i a b l e s  one obta ins  
- t / T 2  

n = p e  r 
0 

where 

T~ = A/k 

and 

where 

( - t h )  
n t  = 1-e 

B = Tlno = ( A c-A)iJ%:. 

The angle y between the  symmetry a x i s  and t h e  angular momentum 

vec tor  i s  given by 
A -  

tany ~ 

Subs t i t u t ing  f o r  w; from (55), we ob ta in  

A t  
tany = G e  , 

where 

G = tany = Apo/CwzA , 
0 

and 

A = k [ 2 )  

(57 1 

(58) 

Note t h a t  A depends i n  s ign  on t h e  relative magnitudes of A and 

C .  I f  A > C ,  A > 0 and y increases with time. I f  A < C ,  A i s  negative 

and y approaches zero. 

It should be noted t h a t  y is not t h e  angle between t h e  symmetry 

. 

axis and any space-fixed axis. Since a torque is  present,  H is not a 
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f ixed  vector.  However, i f  k is small, H varies very l i t t l e  from i t s  

o r i g i n a l  d i rec t ion .  I n  t h i s  case y is  e s s e n t i a l l y  t h e  Euler coning angle 

I n  general ,  t h e  damping constant k must be regarded as a tensor,  

r a t h e r  than a simple sca l a r  c o n s t h t .  The form of t h e  tensor w i l l  

depend on t h e  d i s t r i b u t i o n  of t h e  physical p roper t ies  (mass, conductivity,  

etc.) of t h e  body. It is  reasonable t o  suppose that t h e  transformation 

t o  p r i n c i p a l  axes, which diagonalizes t h e  i n e r t i a  tensor,  w i l l  a l s o  

d iagonal ize  t h e  damping tensor. Hence w e  may suppose that 

K' = ( i1 i2 i3) 
I f  t h e  body is a body of r o t a t i o n  then kl = k,. The motion f o r  t h i s  

case is  immediately given by l e t t i n g  

T~ = C/k3 

T, = A/kl 

and 
Ak3 - Ckl 

AC 
A =  

I f  k, # k,, t he  so lu t ions  a r e  d i f f e r e n t ,  and conta in  per iodic  terms. 

The e s s e n t i a l  f ea tu re s ,  however, are unchanged. 

The v a r i a t i o n  of y with time given by t h e  above theory has been 

found t o  agree  well, qua l i t a t ive ly ,  with t h e  observed motions of t h e  

Pegasus satellites. However ,  t he  damping constant required t o  f i t  t h e  

d a t a  i s  considerably higher than would be expected i f  damping w e r e  only 

magnetic i n  nature. It appears that o ther  types of damping, perhaps 

aerodynamic i n  nature,  are acting. Furthermore, they appear t o  have 

d i f f e r e n t  magnitudes f o r  t h e  d i f f e r e n t  Pegasus satellites. 

It is  no dodbt a gross over-simplification t o  assume that t h e  

damping constant i s  independent of time. I n  f u r t h e r  work attempts should 
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5e =de t o  consider t h e  v a r i i t l n n s  of the damping torques with a t t i t u d e ,  

a l t i t u d e ,  etc. 

I V . .  HAMILTONIAN MECHANICS 

The g r e a t  bulk of e f f o r t  i n  t h i s  con t r ac t  has been devoted t o  the  

app l i ca t ion  of t h e  methods of Hamiltonian Mechanics t o  t h e  r i g i d  bod; 

problem. This is  because these  methods are w e l l  su i t ed  t o  per turba t ion  

problems, whereas o ther  methods, such as used i n  s e c t i o n  111, appear t o  

be more d i f f i c u l t  t o  apply except i n  s p e c i a l  cases. While some work has 

included consideration of t r i a x i a l  bodies, most of t he  a t t e n t i o n  has been 

given t o  the  case of un iax ia l  bodies. Since, f o r  bodies which have two 

near ly  equal p r i n c i p a l  moments of i n e r t i a ,  such as t h e  Pegasus satellites, 

' -  

motion is  very near ly  Eulerian,  t h i s  concentration on un iax ia l  bodies is 

f e l t  t o  be j u s t i f i e d .  

A. Equations of Motion. 

L e t  q l l =  $, q2 = 8 ,  q3 = +, so t h a t  

9 - p )  . 
The momenta c a n o n i b l  t o  the  :q are -giuen--by 

where & is the  Lagrangian function. I f  t he  p o t e n t i a l  i s  independent 

of t h e  ' s ,  
i 

J. 

where 
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Performing t h e  d i f f e r e n t i a t i o n ,  we ob ta in  

P =I$)= xg 

Relations can a l s o  be derived between P and H. W e  f i n d  

T T P = N  H ' = M  H. 

I n  terms of P,  t h e , k i n e t i c  energy is 

The Hamiltonian func t ion  is 

The Hamiltonian equations of motion are 

The f i r s t  of t hese  equations r e p e a t s  equations (69 

1 
(72) 

(73) 

(74) 

. The second becomes 

T ax' aV 
= - p - P - -  

aqi a 'k 4 
I 

The de r iva t ives  of X have been evaluated. * Theytare: 
* 

(75) 
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The following equations of motion are obtained. 

For t h e  torque-free motion of a uniax ia l  body, equations (70)' 

(71)' and (77) become 

p4 = 0 J 

B. h i l t o n - J a c o b i  Method. 

I n  t h e  method of Hamilton-Jacobi, we seek a transformation t o  

new va r i ab le s  which are, i n  t h e  torque-free case, canonical constants 

of t h e  motion. The perturbed motion is  then t o  be determined by studying 

t h e  perturbing Hamiltonian function. 

The va r i ab le s  (q p ) are t o  be transformed t o  new va r i ab le s  
i' i 

(a3,Bi). The new va r i ab le s  w i l l  be  canonical i f  (q ,p ) are canonical 
i i  
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and 

J 

where S(q 

Jacob& equation is 

a ) i s  an  a r b i t r a r y  generating function. The Hamilton- 
i' i 

&& i as/at = 2. (81) 

If % is independent, e x p l i c i t l y ,  of the  time it is a constant of t h e  

motion. L e t  it be al. Equation (78) becomes, using (80), 

As swing 

where the  primes denote d i f f e ren t i a t ion .  Solving f o r  S,:, , 
I 

T 

Since the  right-hand s i d e  of t h i s  equation is independent of $, it 

must be a constant. Thus 

3 "; = a3 

S = a3$ . 
$ 

Simi lar ly ,  w e  ob ta in  

and 

or 

s;=*m , 



. 
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I n  equation (87), e i t h e r  s ign  may be adopted. It turns  out that, t o  

agree with conventional no ta t ion ,  t h e  negative one should be used. 

From (87) , then, 

=-$m d e .  

Let 

This may be wr i t t en  

I1 = $ csce Ja+bsin20+c cose' de, 

where 

c = 2a2a3 . 
To perform t h e  in t eg ra t ion ,  Ibt  

cos0 = a - 8 cosy , (93) 

where a and B are t o  be chosen t o  simplify the  r e s u l t i n g  in t eg ra l .  

W e  f i n d  

a + b(1-a2) + ca] + (2aBb-cB)eosy - bB2cos2y' s inydy 
I ~ = - ~ J  'L 1 - (a-B cosy)' (94) 

I f  
Z a b - c = O  , 

t h e  second term vanishes. 

I f  , f u r t h e r ,  
[a + b(l-a2) + ca] = bB2, 

then  t h e  term under t h e  r a d i c a l  s ign  becomes 

bB2(1-cos2y) = bB2sin2y . 
Then (94) becomes 

(95) 

(96) 
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From ( 9 2 ) ,  we note  that b = h2, where h is t h e  angular momentum. 

Conditions (95) and (96) r equ i r e  

a = a'a /h2 
2 5  a 

$ = 11 - aZ2 /h2 '  /1 - a32/h2' .  

L e t  
4 

cos0 '  = a2/h I 
case* = a3 /h  J 

Then 

a = cose' case* 

6 = s ine '  sine* . 
Equation (93) becomes 

cos0 = cose' case* - s ine '  sine* cosy , 
which has t h e  form of the  l a w  of cosines f o r  sphe r i ca l  t r i ang le s .  

The i n t e g r a l  i n  (97) may be evaluated by making t h e  transformation 

o r  

z = t a n  Y 
2 9  

and expanding i n  p a r t i a l  f r ac t ions .  W e  f i n d  

where 

e2-f2 I - 
I1 = - (l-ez)(l-f') 2 

e2 =w l+a-$ 

(1-,3I3 e4 + (l-fZ) f 4  I ]  4 

l-a- $ 
l-a+$ 
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L e t  

t a d  = ez 

tanv = f z  . 
Then the  i n t e g r a l s  4103) become 

3 
I2 = z - y / 2  

I, = z/f2 - p/f3. 

= z/e2 - ~ / e 3  

After subs t i t u t ing  (105) i n t o  (102) and simplifying, w e  ob ta in  

I1 = h Le(lhi-8)A + f(l-a+8)p - y) 

From (99), w e  can show 

Then 

Equation (106) becomes 

(A+) + cos0* (A+p) - 
Now, consider t h e  sphe r i ca l  t r i a n g l e  i n  €*e 2: 

Figure 2. 
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One may write t h e  following i d e n t i t i e s  from sphe r i ca l  trigonometry: 

Comparison of these  r e l a t i o n s  with (104) gives 

v + n = 2 h  

v - n = 2 v ,  

or 

Equation (109) then gdves 

n cos0' + u cos0* - 
But 

h cos8' = a2 , 
h cos0* = a3 , SO 

I1 = a2n + a3u  - hy . 
The generating function, from (85)  '<as'> and (87) is 

s = - a l t  + a3$ + a2$ - 11(0) . 
From equations (80), 

T 
p = a  

$ 3  

P$ = a2 

6, = - $ +-  
act, 

a 1  
$, = - $ + -  1 

aa3 

To ob ta in  t h e  de r iva t ives  of 11, use  i s  made of r e l a t i o n s  (98) and 
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( loo) ,  t he  expression f o r  h,  

h2 = 2Aa1 + (?]a; 9 

and the  spher ica l  trigonometry i d e n t i t i e s  

s iny - sinv s inq  
s ine  s ine ' -  sine* . 

After d i f f e r e n t i a t i n g  and much s impl i f ica t ion  w e  f ind  
ax 
ae A = h sine* s inv 

al, 
aa3 
- = v.  J 

The equations of transformation then become 

P = a3 

pe = - h sine* s inv 
JI 

B 3 = - $ J + v .  

Up t o  now w e  have been using angles  8' and e*, although no 

a t t empt  has been made t o  iden t i fy  them with the  Euler angles defined 

i n  Section II .B.2.  

e* is found t o  be the  angle between the  z*-axis and the  angular momentum 

vec to r ,  and 8 '  that between H and t he  symmetry ax is .  Furthermore, 

consider f igu re  3: 

It i s  now asser ted t h a t  these  are the  same angles. 
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Figure 3.  

This figure shows the relat ion between the Euler angle sets ($,e,@), 

($*,e*,@*), and ($',e',@'). 

f igure 2 suggests the equivalences 

Comparison of th i s  figure with that of 

n = @ - @ '  

y = @* + $ '  

Equations (98) and (100) are a l s o  consistent with this identif icat ion.  



I Equations (118) then become 
I 

I 

P$ = a3 

= - h s in8  sin($-$*) 
I .  'e 

= 

1 B1 = t -(A/h)($*+$') 

B3 = - $* 

Equations (121) may be w r i t t e n  

h 
A 

l$* + $ 1  = - (t-B1) 

J 

2 C-A 0 '  = - B, - A a 

\ B,  = - $* J 
Now consider t h e  so lu t ion  obtained previously f o r  t h i s  motion as 

given by 

Note t h a t  
a 

n = = A - (  2 - C  ; A ) 
By comparing (122) with (36),  we may iden t i fy  t h e  8 ' s .  

L e t  T = t h e  time a t  which 

y = l $ * + $ ' = O .  

Then 

8, = T 
B, = - l$I 

B3 = - $* . 
0 
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I .  

, *  

I -  

The complete set of equations f o r  the  angles is  

** = *g 7 
I e* = e* = cos-l(a3/h) 

0 

'r 
J 

S i ~ l c e  4* and 9' en te r  o n l y  through y = +* + $', it is  not necessary t o  

consider both angles. One may be set a t  any comenient  value. 

One of t h e  proper t ies  of the Hamilton-Jacobi method is t h a t  t h e  

equations of motion i n  the  perturbed case  are of a r e l a t i v e l y  simple 

form. Suppose the  Hamiltonian function may be  s p l i t  i n t o  two pa r t s :  

9d =qo +9$1(ai,Bi) (125) 

where 9$ is  t h e  Hamiltonian for t h e  unperturbed problem. The 

Unperturbed problem has a so lu t ion  g iven  by a lgebra ic  transformations 

0 

t o  t h e  canonical constants ai,Bi. 

problem is  given by considering the a ,B, t o  be va r i ab le s ,  with the  

The motion f o r  t he  perturbed 

i 
equations of motion I 

3 = -  appi, 5 i )  
i aa i 

Note, however, that t h e  t a sk  of expressing %, i n  terms of t h e  canonical 

cons tan ts  may not  be a n  easy one. 

C. Poisson Brackets. 

Consider any set  (y .1  of Variables. 

w r i t t e n  as func t ions  of t h e  canonical constants.  

These va r i ab le s  may he  
1 

yi = Yi(al,a2,.*-,a 'BpB2,**' ,BN't) ,  N 
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where N i s  the  number of degrees of freedom. (Note t h a t  t h e  number of 

va r i ab le s  y is  not 

one obtains 
i 

But, from (126), 

r e s t r i c t e d  t o  be equal t o  N.) D i f f e ren t i a t ing  (127), 

a t  . 

so 

p o t e n t i a l  w, may be expressed as a func t ion  of Now, t h e  perturbing 

t h e  y 's ,  i.e. a 
i 

Di f fe ren t i a t ing  (130), w e  ob ta in  

J 

Subs t i t u t ing  i n t o  (129) w e  f i nd  

-- 

where \ y  ,y 1 , t h e  Poisson bracket, is defined as 
i k  

In equation (132), no te  t h a t  i f%,=  0, corresponding t o  the  unperturbed 

case ,  then . aYi  
'i a t  . = -  
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Thus ay / a t  is j u s t  t h e  unperturbed rate of change of y 

Also, noting t h a t  t h e  sum i n  (132) i s  of t he  form of a matrix product, 

cal l  i t  (9i) . 
i i’ 0 

we def ine  matrices Y ,  B, and by 
Y 

Then w e  have 

i = (e)  + B%. 
Y 0 

(135) 

Equation (135) gives,  e x p l i c i t l y ,  t he  perturbed rate of change of t h e  

va r i ab le s .  

A t  t h i s  podnt, w e  have two poss ib l e  approaches which may be taken. 

The equations of motion as expressed i n  equations (126) may be used 

by expressing dk, i n  terms of the canonical constants1 ai,BiS and 

d i f f e r e n t i a t i n g  t o  ob ta in  terms of t h e  form &,/act . After i n t e g r a t i n g  

t o  obta in  the  time v a r i a t i o n s  i n  ai,Bi, t h e  corresponding v a r i a t i o n s  i n  

the  angular va r i ab le s  may be  obtained through t h e  transformation equations 

i 

(120) and (121). 

Al te rna t ive ly ,  w e  may e l e c t  t o  use t h e  equations of motion i n  

t h e  form of equations (135), by expressing 36 i n  terms of t h e  va r i ab le s  

of t h e  a r r a y  Y and d i f f e r e n t i a t i n g  with r e spec t s  t o  these va r i ab le s .  

I 

Note 

t h a t  equations (135) bear a c lose  analogy t o  t h e  Lagrange planetary 

equations of Celestial Mechanics. 

The lat ter course is f e l t  a t  t h i s  time t o  be the  more promising one, 

and f u t u r e  work should be dirkcted along t h i s  l i n e .  

V. GRAVITY-GRADIENT TORQUE 

The g r a v i t a t i o n a l  po ten t i a l  energy of a r i g i d  body i n  t h e  

v i c i n i t y  of a c e n t r a l  po in t  mass is, t o  a good approximation, 



. 

4/ = -? + %[3pT1p - td, 
0 2R0 

where 

G = universa l  g r a v i t a t i o n a l  constant 

M = mass of c e n t r a l  body 

m = mass of r i g i d  body 

Ro = dis tance  between the  centers  of mass of M and m 

p = u n i t  vector d i r ec t ed  from the  c.m. of m t o  t h a t  of M 

t = t r a c e  of I 
I 

In  (136), t h e  f i r s t  term is  t h e  g o t e n t i a l  energy o5ttwb poin t  masses. 

Suppose t h a t  the  coordinate system t o  which I and p are referenced 

is t h e  body-fixed principal-axis system. Then 

and t = A + B + C. I f  t h i s  system is used, then, of the  terms i n  

(136), only the  term containing p '  w i l l  depend on the  or ien ta t ion .  

I 

Thus 

w e  may l e t  t h e  perturbing po ten t i a l  be 
T %I = K p '  I ' p '  7 

o r  %, = K(A12+Bm2+Cn2) ) 
where 

3GM 
K = Z  

0 

where 1, m, n are the  components of p ' .  

Now p '  transforms according t o  

P = TP' y 

I 
p ' = T  p .  o r  

Then (13,7,) becomes 
T I  9-+ = KP TI'T p . 

,If the components of, p,are  ( h , ~ , v ) ,  we obtain; iac:aualar fov, 

(137) 



. 
I 
I .  

-30- 
- 

= K 

+ ev2 + 2c(A cos$ + p 

- 2f (A sin+. - p; cos$)v sine cos0 

(a cos2+ + d sin2$)A2 + (a sin2$ + b cos2$)u2 

(141) 

E 
sine - (A sin+ u cosg)cosQ 

3 
where 

(112) 

a = (Acos2$+Bsin2$) 

b = (Asin2$+Bcos2$) 

c = (A-B)sin$ cos$ 

d = b cos28 + Csin20 
e = b sin29 + Ccos29 i f = b -C. 

In the uniaxial case, A = B, and N, simplifies considerahly. 
w, = K 1 p c o s 2 $  + (Acos20+Csin2e)sin2$] A 2  

Thus 

+ bsin2$ + (Acos28+Csin28)cos2$] p2 

+ @sin2 e+ccOs% v2 

- 2(A-C)(Asin$ - u cos+)vsine cos0 . 3 
Now let us return to equation (138). We have 

%, = K(A12+Bm2Kn?) ,  

which, for A = B, becomes 

Let 6 be the angle between p '  and the 2'-axis. 

cos6 = p ' * R '  = n 

sin26 = 1 - n2 = 12 + m2 . 

Then 
A 

3 
Equation (144) becomes 

%, = K [Asin26 + C c o s 2 d .  

This may be written in two equivalent forms: 

3, = K L(A-C)sin26 + CJ 
or 

s, = K [ (C-A)cos26 + A 1  . , 



0 

I 
V I .  NUMERICAL INTEGRATION ROUTINE 

It has been an t i c ipa t ed  t h a t ,  a t  some time during t h e  performance 

of this work, a need would arise for  the  c o m p u t e r b t e B r a t W v o 5  

d i f f e r e n t i a l  equations such as those of equations (126) o r  (135). To 

t h i s  end, a computer subroutine has been w r i t t e n  which w i l l  numerically 

i n t e g r a t e  simultaneous d i f f e r e n t i a l  equations. 

A. Description of t he  Routine. 

The subroutine, c a l l e d  QUAD1, e f f e c t s  the so lu t ion  of a system 

of f i r s t  order d i f f e r e n t i a l  equations of t h e  form 

Y; = f ( f f ,YpYp,** . ,Y 1 9 i = 1, 2,.*.,N (148) N 
where N may be any number from 1 t o  12, o r  l a r g e r ,  with s l i g h t  

niodif5cations. 

The in t eg ra t ion  method used is  a modified Runge-Kutta method 

known as Merson's method. The chief advantage t o  t h i s  method is  t h a t  

it provides a very good estimate of t h e  f i f th -order  t runca t ion  e r ro r .  

From the  l imi ted  tests conducted, i t  a l s o  appears t o  be about f i v e  

times as accura te  as Runge-Kutta using Runge's coe f f i c i en t s .  The 

equations f o r  Merson's method fo r  one dependent v a r i a b l e  are: 

3 k, = hf(X,Y) 

k, = hf(x + h/3,y + k1/3) 

k, = hf (x  + h/3:,y + k,/6 + k2/6) 

k4 = hf (x + h/2,y + kl/8 + 3k3/8) 

k, 

yn+l n 
LE 3: 1/30 (2k,-9k3+8k,-k,) . 

hf(x  + h,y -t k1/2 - 3k3/2 + Zk,) 

= y + 1 /6  (k1+4k4+k,) 

QUAD1 i s  a con t ro l  routine.  Once i t  is  ca l l ed  i t  remains i n  
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c o n t r o l  u n t i l  i n t eg ra t ion  i s  completed, c a l l i n g  subroutines t o  evaluate 

t h e  func t ions  f 
i’ 

t o  p r i n t  a t  spec i f ied  i n t e r v a l s .  

t o  in t eg ra t e ,  t o  a d j u s t  t he  in t eg ra t ion  i n t e r v a l  and 

The incrementing of the independent 

and dependent va r i ab le s  is performed in(  double precision. 

proceeds u n t i l  t he  independent va r i ab le  exceeds a spec i f ied  value. 

d e t a i l e d  desc r ip t ion  and l i s t i n g  of the,program is  a v a i l a b l e  t o  in t e re s t ed  

persons. 

In t eg ra t ion  

A 

. 


